
144 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 9, NO. 1, JANUARY 2012

Accurate and Omnidirectional UWB Radar Imaging
Algorithm With RPM Method Extended to

Curvilinear Scanning Model
Yoriaki Abe, Shouhei Kidera, Associate Member, IEEE, and Tetsuo Kirimoto, Senior Member, IEEE

Abstract—Ultrawideband pulse radars are a promising technol-
ogy for high-quality imaging sensors for rescue robots in the near
field because they have the advantage of high range resolution. We
have already proposed the accurate and fast imaging algorithm as
range point migration (RPM), which employs the direction of ar-
rival (DOA) with the global characteristic of the multiple observed
ranges. However, this algorithm assumes the line scanning of an
omnidirectional antenna and limits the imaging range. To over-
come this limitation, this letter derives an extended RPM method,
which accomplishes omnidirectional imaging and accurate target
positioning. As a false-image-reduction scheme in this method, this
letter introduces a postprocessing algorithm, which constrains the
searching range for DOA estimation by using the initial RPM
image. The results of numerical simulations, including noisy sit-
uations, show that the proposed method accomplishes accurate
and omnidirectional imaging on the order of 1/100 wavelength and
enhances the imaging range while avoiding false images.

Index Terms—Curvilinear scanning, false-image reduction,
omnidirectional imaging, range point migration (RPM), ultraw-
ideband (UWB) pulse radars.

I. INTRODUCTION

U LTRAWIDEBAND (UWB) pulse radars have great poten-
tial in near-field measurement even in critical situations

such as disaster sites, where an optical measurement is barely
applicable due to dusty air or dark smog. They also have
a definitive advantage for high-range-resolution imaging. In
recent years, various types of radar imaging algorithms based
on data synthesis, such as synthetic aperture radar (SAR) [1],
time-reversal algorithms [2], [3], and range migration methods
[4], [5], have been proposed. However, their computational
burdens often become impractically large, and they are then
unsuitable for real-time applications such as robotic sensors.
On the other hand, the high-speed imaging algorithm called
the Shape Estimation Algorithm based on BST and Extraction
of Directly scattered waves (SEABED) achieves direct and
nonparametric imaging based on reversible transforms between
the time delay and target boundary [6]. However, SEABED re-
quires the accurate extraction of the so-called quasi-wavefront,
which is connected by multiple range points, and distorts the
image, particularly for the multiple or complex-shaped targets.
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On the contrary, we have already proposed the accurate and
fast imaging algorithm, range point migration (RPM), which
uses observed range points and their amplitudes to estimate the
direction of arrival (DOA) [7]. Because this method is based
on direct group mapping from observed ranges to target points,
it does not require range connection and substantially resolves
the inaccuracy in estimating complex target shapes. In addition,
an accurate range extraction method using a frequency-domain
interferometer has been proposed [8], which is applicable to
more complex-shaped targets. Conversely, the methods in [7]
and [8], based on the original RPM, assume linear scanning and
are not suitable for omnidirectional imaging, which is required
for a moving robot application. This is because the methods
often produce many false images, even if all range points are
accurately extracted.

First, this letter extends the conventional RPM so that it
is suitable for the curvilinear scanning of an antenna and
omnidirectional imaging. Then, we introduce an example using
the extended RPM, indicating that it creates false images far
from the actual target boundary. To enhance the accuracy of
the imaging, a false-image-reduction algorithm is incorporated,
which constrains the searching range for the DOA estimation
using the initial target points obtained by the RPM. This con-
straint is based on the unique property that the spatial density
of target points corresponding to a false image is considerably
different from that corresponding to actual points. The results
in numerical simulations assuming the multiple targets and
noisy situations prove that the proposed method successfully
suppresses the false images and accomplishes accurate target
imaging on the order of 1/100 wavelength, even for a curvilin-
ear scan trajectory.

II. SYSTEM MODEL

Fig. 1 shows the system model. It assumes that targets have
arbitrary shapes with clear boundaries. It employs a monostatic
radar system, where an omnidirectional antenna is scanned
along an arbitrary curve. It assumes that targets are not in-
cluded in the observation domain. We also assume that the
propagation speed of the radio wave is known and constant.
We use a monocycle pulse as the transmitting current. The
space in which the targets and antenna are located is expressed
by the parameters x and z. The parameters are normalized by
λ, which is the central wavelength of the pulse. s′(X,Z, t) is
defined as the electric field received at the antenna location
(x, z) = (X,Z) at time t. s(X,Z, t) is the output of the Wiener
filter, whose definition and filtering procedure are described
in [7]. s(X,Z, t) is converted to s(X,Z,R′) using the useful
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Fig. 1. System model.

conversion R′ = c0t/2λ, where c0 is the speed of the radio
wave. The group of the so-called range points (X,Z,R) is
extracted from the local peaks of s(X,Z,R′) as

∂s(X,Z,R′)

∂R′ =0

s(X,Z,R′) ≥α max s(X,Z,R′). (1)

The parameter α > 0 is empirically determined.

III. PROPOSED METHOD

A. RPM Algorithm for Curvilinear Scanning Model

The RPM has been proposed as a conventional radar algo-
rithm, which achieves accurate and high-resolution imaging
even for extremely complex-shaped targets. However, the con-
ventional RPM assumes the line scanning of an omnidirectional
antenna and limits the imaging range. This section extends
the RPM so that it is suitable for curvilinear scanning and
omnidirectional imaging. The RPM algorithm is based on the
simple principle that a target boundary point should exist on a
circle, with a center at the antenna position (X,Z) and radius
R. Thus, each point (x, z) can be calculated using the cor-
responding DOA. Although this algorithm basically assumes
the linear scanning of the antenna, it can be readily applied
to arbitrary curvilinear scanning and realizes omnidirectional
imaging by calculating the intersection points of the full circles.
For omnidirectional imaging, the evaluation function for DOA
as fk(θ; q, qi) is extended as

fk(θ; q, qi)= exp

[
−{θ − θk(q, qi)}2

2σ2
θ

]
, k=1, 2 (2)

where q = (X,Z,R) and qi = (Xi, Zi, Ri) are defined and
the constant σθ is empirically determined. θk(q, qi) denotes
the angle from the x-axis to the intersection points of the
circles, with parameters (X,Z,R) and (Xi, Zi, Ri). The two
intersection points for each pair of circles are discriminated
by the index k. Fig. 2 shows the relationship between the
intersection points of the circles and the DOA for the actual

Fig. 2. Relationship between the target boundary and the intersection points
of the circles.

scattering point. The evaluation values Fk(θ; q) for the DOA
estimation are defined as

Fk(θ; q) =

Nq∑
i=1

s(Xi, Zi, Ri)fk(θ; q, qi)

× exp

[
− (X−Xi)

2+(Z−Zi)
2

2σ2
F

]
, k = 1, 2

(3)

where Nq is the total number of the range points and the
constant σF is empirically determined. As the antenna position
(Xi, Zi) moves to (X,Z), its intersection point converges to
the actual scattering point, and consequently, Fk(θ; q) evolves
around the true DOA. Since it is difficult to determine whether
F1(θ; q) or F2(θ; q) should be considered, the optimum DOA
for each q is calculated as

θopt = argmax
θ∈Θ

{F1(θ; q) + F2(θ; q)} (4)

where Θ = {θ|0 ≤ θ < 2π}. The target boundary (x, z) for
each range point (X,Z,R) is expressed as

x = X +R cos θopt
z = Z +R sin θopt

}
. (5)

By calculating all the intersection points of the circles, this
extended RPM algorithm can be applied to curvilinear scan
trajectories and accomplish omnidirectional imaging. However,
neither of the two intersection points of the circles corresponds
to the actual target point, and a misselection of these points then
causes false images.

B. False-Image-Reduction Scheme

To resolve the aforementioned problem, this letter derives a
postprocessing algorithm, which constrains the searching range
for the DOA estimation. This scheme is based on the unique
characteristic of the RPM that, if the estimated target point
is close to an actual target boundary, the neighboring region
around this point should be also reconstructed from different
antenna locations. On the contrary, in the case of the false
image, this characteristic is rarely satisfied. Consequently, the
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spatial density of the target points around the actual target
boundary is comparatively higher than that for the false im-
ages. For the searching range constraint, the following function
g(θ, θl;X,Z) is introduced as

g(θ, θl;X,Z)=exp

[
− (θ − θl)

2

2σ2
g

]
, l=1, . . . , NT (6)

where σg is constant, NT is the total number of the estimated
target points, which are obtained by the RPM, and θl denotes
the angle from the x-axis to the point (xl −X, zl − Z). Then,
the evaluation function G(θ;X,Z) for the searching range is
introduced as

G(θ;X,Z) =

NT∑
l=1

g(θ, θl;X,Z). (7)

G(θ;X,Z) takes a large value at the angle where sufficient
numbers of estimated points exist. The searching range for the
DOA at (X,Z) is determined as

Θ(X,Z) =

{
θ|G(θ;X,Z) ≥ γmax

θ
G(θ;X,Z)

}
(8)

where the constant γ is empirically determined. To suppress
false images, we recalculate θopt for each range point (X,Z,R)
using the searching range of Θ(X,Z)

θopt = arg max
θ∈Θ(X,Z)

{F1(θ; q) + F2(θ; q)} . (9)

It should be noted that the constant σg is determined based
on the sampling interval of the antenna. This is because the
interval of the target points becomes close to that of the antenna
locations due to the characteristic of the RPM, as previously
mentioned. Hence, if the σg in (6) is too small compared with
the sampling interval of the antenna, the G(θ;X,Z) in (7) does
not grow effectively in the true DOA. On the contrary, if σg is
too large, G(θ;X,Z) grows over a wide range, and then, the
constraint of the searching range does not work correctly. The
procedure of the proposed method is as follows.

Step 1) A set of target points is obtained as Trpm =
{(xl, zl)|l = 1, 2, . . . , NT } in (4) and (5).

Step 2) Using target points Trpm, the searching range
Θ(X,Z) is calculated in (6)–(8) for each range point
(X,Z,R).

Step 3) For each range point (X,Z,R), the target points
are updated using (5) and (9), with the constrained
searching range as Θ(X,Z), and are added to
Ttemp = {(xm, zm)|m = 1, 2, . . . , NT }.

Step 4) Remove the target points in Ttemp that satisfy√
(X − xm)2 + (Z − zm)2 ≤ κmin

j
Rj (10)

where κ ≤ 1 and Rj denotes the jth range points
observed at the same antenna location at (X,Z),
and we finally obtain the target points as Tprop =
{(xn, zn)|n = 1, 2, . . . , N ′

T }, where N ′
T is the re-

maining number of target points.
Step 4) suppresses false images caused by random noise be-
cause there should be no target points inside the circle whose
center is the antenna position and radius is the shortest observed

Fig. 3. Output of the Wiener filter and the extracted range points for
S/N = 30 dB.

range at the position. It should be noted that the proposed
method not only decreases the number of false images but also
increases the number of accurate target points by recalculating
the DOA. It then achieves accurate omnidirectional imaging
without using a priori knowledge of target locations.

IV. NUMERICAL SIMULATIONS

This section investigates the imaging performance for each
method. We assume two targets with clear boundaries, as shown
in Fig. 1. One target has an asteroidal boundary and is expressed
as (x− 2.5)2/3 + (z − 2.5)2/3 = 1, and the other target has
a circular boundary and is expressed as (x− 6.25)2 + (z −
2.5)2 = 0.52. The conductivity and relative permittivity of the
targets are set to 1.0× 106 S/m and 1.0, respectively. An
omnidirectional antenna is scanned along the circle whose
center is (x, z) = (2.5, 2.5) and radius is 2λ. Any type of
curvilinear scan trajectory, even if it is not differentiable, can,
in principle, be used instead. The finite-difference time-domain
method is used for the calculation of the received signals.
Gaussian noises are added to the received signals, and in this
case, S/N = 30 dB. Here, the S/N is defined as the ratio
of the peak instantaneous signal power to the averaged noise
power after applying the matched filter. Fig. 3 shows the output
of the Wiener filter and the extracted range points (X,Z,R),
where φ denotes the angle as shown in Fig. 1. Fig. 4 shows the
image estimated by the proposed method before false-image
reduction. σθ = π/25, σF = 0.5λ, α = 0.3, and β = 0.2 are
set. This result indicates that the proposed algorithm creates
target points along the actual boundary even when using the
curvilinear scanning of the antenna. However, it also shows that
there are some false images outside the circular scan trajectory.
These false images appear when the intersection points of the
circles converge to the opposite side of the actual target. On the
other hand, Fig. 5 shows the image estimated after the false-
image reduction is applied. σg = π/10, γ = 0.3, and κ = 0.8
are set. It is obvious from the result that this postprocessing
significantly suppresses the false images and increases the
number of target points close to the actual boundary.

For a comparison, the SAR method extended to the near field
[7] is evaluated. Fig. 6 shows the example of the SAR of the
same target in Fig. 1. Although this method focuses on the
image around the actual boundary, it creates many unnecessary
images far from the actual boundary. These false images are
basically caused by the same effects originated in the extended
RPM method. Furthermore, the spatial resolution of the SAR



ABE et al.: RADAR IMAGING ALGORITHM WITH RPM METHOD EXTENDED TO CURVILINEAR SCANNING MODEL 147

Fig. 4. Estimated image with the proposed method before false-image reduc-
tion for S/N = 30 dB.

Fig. 5. Estimated image with the proposed method after false-image reduction
for S/N = 30 dB.

Fig. 6. Estimated image with the SAR for S/N = 30 dB.

is strictly determined by half a pulsewidth, even if an infinite
aperture size is given, which is often not sufficient to identify
the edge region.

For a quantitative evaluation of the accuracy, ε(xi
e) is intro-

duced as

ε
(
xi
e

)
= min

∥∥x− xi
e

∥∥ , (i = 1, 2, . . . , NT ) (11)

where x and xi
e express the location of the true target point

and the estimated point, respectively. NT is the total number

Fig. 7. Error distribution for the proposed method before and after false-image
reduction.

Fig. 8. Estimated image with the proposed method after image reduction for
S/N = 30 dB.

of xi
e’s. Fig. 7 shows the plots of the number of estimated

points for each value of ε. The NT for each result is 296 for the
proposed method before false-image reduction, and it is 260 for
the proposed method after false-image reduction. This figure
reveals that the number of estimated points with ε ≥ 1.0λ for
the extended RPM algorithm becomes large due to the false
image, while the proposed method completely suppresses the
estimated points with such errors. On the contrary, the number
of estimated points with ε ≤ 0.1λ increases with the proposed
method. This result appeals as a noticeable advantage in that
the proposed method not only removes the false-image points
but also increases the points around the actual boundary using
accurate DOA recalculation. The mean values of ε as ε for each
result are about 0.75λ for the extended RPM algorithm and
about 0.029λ for the proposed algorithm. As a reference, the
image estimated by the proposed method for an S/N = 20 dB
is shown in Fig. 8. This evaluation shows that the proposed
method is still accurate for lower S/N ratios.

Fig. 9 shows the relationship between ε and S/N for the ex-
tended RPM algorithm and the proposed algorithm. This figure
shows that the value of ε for the proposed algorithm is consider-
ably lower than that of the extended RPM algorithm in the case
of S/N ≥ 20 dB. However, in the case of S/N ≤ 15 dB, the
accuracy of the proposed algorithm deteriorates. This is because
the number of false images for the lower S/N increases due to
random noise, and there is then no significant difference in the
spatial density between the actual and false points. This figure
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Fig. 9. Relationship between ε and S/N for the proposed method before and
after false-image reduction.

Fig. 10. Estimated image with the proposed method in a multiple scattering
environment for S/N = 30 dB.

also verifies that the proposed method accomplishes accurate
target imaging within 0.03λ over S/N ≥ 25 dB. Although this
method apparently requires high S/N levels to retain accuracy,
the definition of the S/N ratio considers the locality both in
the frequency domain and in the time domain because it strictly
estimates UWB pulse power, and Kidera et al. [7] indicate that
the actual UWB radar system can achieve this level of S/N
under the assumption of near-field measurement.

To discuss the mutual effects due to multiple scattering,
Fig. 10 shows another example using the proposed method
for the case of two more circular targets which are added
to the previous case. The S/N level is 30 dB. This figure
indicates that false images can be recognized far from the
actual target locations because the range points extracted from
the multiple scattering echoes produce incorrect images. The
proposed method cannot deal with this type of false image,
and our future studies will remove these images based on an
approach such as that in [6].

The imaging range of the proposed method is assumed to
be more than a wavelength distance from the antenna locations
to avoid the mutual coupling effect between the antenna and
targets. Furthermore, the proposed method is applicable to
the far-field area if sufficient accuracy for range extraction is
obtained. Thus, the imaging range is mainly determined by the
S/N levels, which is generally common for any conventional
methods.

Note that the antenna scan trajectory plays an essential role
for the reconstructible area of the target boundary because
strong echoes are observed only from the target boundary
perpendicular to the line of sight [7]. Thus, the curvilinear scan
trajectory here is set to surround the asteroidal target so that
the overall shape of this target can be obtained. Furthermore, if
the target has deep concave edges, the antenna may need to be
scanned near the concave edge region to observe the scattered
signals. Moreover, this is an inherent and common property in
all the conventional and proposed approaches.

As an additional remark, since this evaluation employs
a priori knowledge as to the possible observation domain,
this domain should be sequentially estimated by employing
the observed range data or the previously obtained images in
realistic situations. As one of the effective schemes for this
extension, the first arrival range can be employed to determine
the next possible antenna location, and this idea is similar
to the false-image-reduction scheme provided in Step 4) of
the procedure of the proposed method. This is because it is
a generally acceptable fact that the inside area of the circle,
whose radius is the first range and center is (X,Y ), should not
include the target existing area and can offer the next possible
observation domain. However, this problem will be treated in
our future work.

V. CONCLUSION

In this letter, we have first extended the conventional RPM so
that it is suitable for the curvilinear scanning of an antenna and
omnidirectional imaging. Then, we have introduced an example
using the extended RPM, indicating that it creates false images
far from the actual target boundary. To overcome this difficulty,
a novel image-recovering algorithm has been proposed, which
constrains the searching range for the DOA estimation using
initially estimated target points with the RPM method. The
results in numerical simulations including noisy situations show
that the proposed method accomplishes accurate target imaging
on the order of 1/100 wavelength, even with a curvilinear scan
trajectory.
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